Betti numbers for modules of finite length

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds for Betti Numbers of Multigraded Modules

This paper gives a sharp upper bound for the Betti numbers of a finitely generated multigraded R-module, where R = k[x1, . . . , xm] is the polynomial ring over a field k in m variables. The bound is given in terms of the rank and the first two Betti numbers of the module. An example is given which achieves these bounds simultaneously in each homological degree. Using Alexander duality, a bound...

متن کامل

Extremal Betti numbers of graded modules 1 Marilena Crupi

Let S be a polynomial ring in n variables over a field K of characteristic 0. A numerical characterization of all possible extremal Betti numbers of any graded submodule of a finitely generated graded free S-module is given. 2010 Mathematics Subject Classification: 13B25, 13D02, 16W50.

متن کامل

Betti Numbers of Graded Modules and Cohomology of Vector Bundles

In a remarkable paper Mats Boij and Jonas Söderberg [2006] conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their Conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fa...

متن کامل

GRADED BETTI NUMBERS AND h-VECTORS OF LEVEL MODULES

Abstract. We study h-vectors and graded Betti numbers of level modules up to multiplication by a rational number. Assuming a conjecture on the possible graded Betti numbers of Cohen-Macaulaymodules we get a description of the possible h-vectors of level modules up to multiplication by a rational number. We also determine, again up to multiplication by a rational number, the cancellable h-vector...

متن کامل

Auslander-reiten Components Containing Modules with Bounded Betti Numbers

Let R be a connected selfinjective Artin algebra, and M an indecomposable nonprojective R-module with bounded Betti numbers lying in a regular component of the Auslander-Reiten quiver of R. We prove that the Auslander-Reiten sequence ending at M has at most two indecomposable summands in the middle term. Furthermore we show that the component of the Auslander-Reiten quiver containing M is eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1990

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1990-1013967-1